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Extension of the Poincare Algebra
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These generators carry space—time and internal indices and transform under the

operations of both groups. The algebra of these generators®
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Extension of the Poincare Algebra

it is a “gauge invariant” extension of the Poincaré algebra in a sense that if one
defines a “gauge” transformation of its generators as
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The algebra Ls(P) has a simple representation of the following form
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the matrix representations of this algebra are transversal
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Killing Metric
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where 7 is the projector into the two-dimensional plane transversal to the momentum
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Non-Abelian Tensor Gauge Fields

The gauge fields are defined as rank-(s + 1) tensors

ZAl...AS(x)a 520,1,2,...

and are totally symmetric with respect to the indices \;...\s. A priory the tensor fields
have no symmetries with respect to the first index 1. The index a numerates the generators
L, of the Lie algebra Lg of a compact Lie group G with totally antisymmetric structure

constants fupe.

1
Au(zoe) =) = Al (2) Lee™..e™.

s!
s=0

The gauge field AZA . carries indices a, A1,..., A which are labelling the generators

.o S

LM+ = L.eM...e* of extended current algebra Lg associated with the Lie algebra

The gauge transformation of the field A,(x,e) is defined as

A (z,€) = U(€) Ay(z, e) U (€) - géw(e) U8,



Transformation of Tensor Gauge Fields

It is useful to have an explicit expression for the transformation law of the field components
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field strengths tensors take the following form
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Lagrangian of Tensor Gauge Fields
1

L(2) = (£(,€)) = — (G, (2, )G (,€),
L(x,e)= Z %E,\l (@) eMet
s=0 .
£() = (L(r.e) = Y Lo a(x) (™) using Killing metric

and the density for the lower-rank tensor fields is
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Lagrangian of Tensor Gauge Fields
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Lagrangian of Tensor Gauge Fields

L=L+L =
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The Lagrangian for the lower-rank tensor gauge fields has the following form:
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Interaction of Tensor Gauge Fields
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Figure 1: The interaction vertex for the vector gauge boson V and two tensor gauge
bosons T - the VT'T vertex - V2%, . (k,p, ¢) in non-Abelian tensor gauge field theory [11].
Vector gauge bosons are conventionally drawn as thin wave lines, tensor gauge bosons
are thick wave lines. The Lorentz indices a& and momentum £ belong to the first tensor
gauge boson, the 74 and momentum ¢ belong to the second tensor gauge boson, and

Lorentz index 5 and momentum p belong to the vector gauge boson.
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Figure 2: The quartic vertex with two vector gauge bosons and two tensor gauge bosons -
the VVTT vertex - ngﬁcjf,y 5 g(k, P, q,r) in non-Abelian tensor gauge field theory [11]. Vector
gauge bosons are conventionally drawn as thin wave lines, tensor gauge bosons are thick
wave lines. The Lorentz indices 7% and momentum ¢ belong to the first tensor gauge
boson, 56 and momentum 7 belong to the second tensor gauge boson, the index o and
momentum k belong to the first vector gauge boson and Lorentz index 8 and momentum

p belong to the second vector gauge boson.



Callan-Simanzik Beta Function

(12s* — 1)Co(G) — 4nsT(R)
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127

s=1,2,...

at s=1 we are rediscovering the asymptotic freedom

beta function has the same signature as the standard gluons, which means that tensorglu-
ons ”accelerate” the asymptotic freedom (6.3) of the strong interaction coupling constant
a(t). The contribution is increasing quadratically with the spin of the tensorgluons, that

is, at large transfer momentum the strong coupling constant tends to zero faster compared

to the standard case:
Q

:1%—1904157

a(t) (6.10)



Chern-Pontryagin density in 4-D Yang-Mills Theory

1
P(A) = ZSMW TrG,, Gy, = 3, CH,

which 1s a derivative of the Chern—Simons topological vector current

2
CH = gV Tr(AvakAp - iggAUAAAp).



JTopological Mass Generation

Deser, Jackiw and Templeton and Schonfeld

who added to the YM Lagrangian a gauge invariant Chern-Simons density:
1 .2
LYMCS — —§TTGijGij -+ % 5ijk Tr (AZ(?]Ak — ZggAz’AjAk)y

where G; is a field strength tensor. The mass parameter p carries dimension of [mass]*.
The corresponding free equation of motion for the vector potential A4; = e;e?*® has the
form

(—k277@'j -+ kikj)ej —+ Z,u gijl kjel =0

and shows that the gauge field excitation becomes massive.

we suggest a similar mechanism that generates masses of the YM boson

and tensor gauge bosons 1n (5+1)-dimensional space-time at the classical level.




New Topological Invariant in Tensor Gauge Theory

in non-Abelian tensor gauge theory there exists a gauge invariant,

metric-independent density I' in five-dimensional space-time?:
I' = E’:lﬂ’mpqiz—jrCTYlmCTan,q — alZla

which is the derivative of the vector current ¥; (1,..=0,1,....4).
2= e!"PUTH(G o A pg).
This invariant in five dimensions has many properties of the Chern-Pontryagin density

I is obviously diffeomorphism-invariant and does not involve a space-time metric.

It 1s gauge invariant because under the gauge transformation

6 " = —1g€vipo Tr([Gqu]GAp,a + Gy ([G)»p,ag] + [ka";:o])) = 0.



New Topological Invariant in Tensor Gauge Theory

It became obvious that " is a total derivative of some vector current 2.

Indeed, simple algebraic computation gives I" = €y p0 TT Gy Grp,0 = 9, 2, Where

After some rearrangement and taking into account the definition of the field strength tensors
vector current:



lensor Gauge Theory and Mass Generation

Let us consider the fifth component of the vector current X :

the sum is restricted to the sum over indices of four-dimensional space-time.
This is the case when the gauge fields are independent on the fifth coordinate x4.
integral over four-dimensional space-time®:
fd4x2:empa/d4xTerApg.
My My
As we claimed this functional is gauge invariant up to the total divergence term.

Ot /d4XE = Evrpo /Tr(_ig[cvw’;‘-]/\pa T Gvk(vpga — ig[AporS]))d4X
Mgy My

= Evrpo f dp Tr(Gy).60) d*x = Evrpo / Tr(Gypés)do, =0.
My oMy



New gauge anomalies and topological invariants in various
dimensions

Considering integral over four-dimensional space—time~

Y (A) =

53 f d*x "7 Tr(G 1 A g ).
My

This entity is an analog of the Chern—Simons integral’

g2

WA =52

3. .ijk .2
d”x V" Tr AiajAk—lg—AiAjAk ,
M3 3

but, importantly, instead of being defined in three dimen-

sions it is defined in four dimensions. Thus, the non-Abelian slide 18
tensor gauge fields allow to build a natural generalization of

the Chern—Simons characteristic in four-dimensional space—

time.

The functional X'(A) 1s invariant under infinitesimal
gauge transformations up to a total divergence term.



lensor Gauge Theory and Mass Generation

In four dimensions the gauge fields have dimension of [mass]!,

therefore if we intend to add this new density to the Lagrangian we
should introduce the mass parameter m:
mE — mg]))\’loo' Tl‘ GV)\.A,OO' ’

where parameter m has units [mass]'.

we arrive at the following system of equations:
3%Ay — 8,0, Ay 4+ MEyyspdyBip =0,

2m

antisymmetric part By, of the rank-2 gauge field A, interacts through the mass term, the symmetric part A3, completely decouples



lensor Gauge Theory and Mass Generation

(—k*nvp + kuky)e +imeyuapkubi, =0,

2m

four pure gauge solutions ey =ky, by =0;
e, =0, by), =kv&x —kpéy.

three solutions representing propagating modes:

O 0 0 O
D =0,1,00, bV=1_MY 00 0 0
H Y Yv i\/E2+M2 0O 0 0 1)°
O 0 -1 O
O 0 0 O
1 M O 0 0 1
(2) (2)
e — 070’17()’ b = T ’
" ( ) Yy 1\/I_<)2_|_M2 (O O 0 O
O -1 0 O
O 0 0 O
e =(0,0,0 p L0 0 1.0}
K ’,,\/I_C)2—|—M2 ’ vV i10 —1 0 O
O 0 0 O

It is a genuine superposition of vector and tensor fields.



lopological invariants in various dimensions

Considering integral over four-dimensional space—time~

Y (A) =

53 f d*x "7 Tr(G 1 A g ).
My

This entity is an analog of the Chern—Simons integral’

g2

WA =5

3. .ijk .2
d”x V" Tr AiajAk—lg—AiAjAk ,
M3 3

but, importantly, instead of being defined in three dimen-
sions it is defined in four dimensions. Thus, the non-Abelian
tensor gauge fields allow to build a natural generalization of
the Chern—Simons characteristic in four-dimensional space—
time.

The functional X'(A) 1s invariant under infinitesimal
gauge transformations up to a total divergence term.



Large Gauge Transformations

_ ? _
Al = U AMU+§ U~ 0,U,
AUy = U AU+ U AU, — U DU AU + é (U=0,Uy — U~ U\U9,U),

where U, is the second term in the expansion of the unitary matrix U(=(z,e)) over the

vector variable:

U(x,e) = Ulz)+U,(z)e! + ..,
U (x) = U (2)U,(x)U™ (x)e" + ...

S

0

2
|

U=1-1igL, (x), U, = —igL, §;(7), ...
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Large Gauge Transformations

we have to find out how X' (A) transforms under large gauge transformations. The expres-
sion we found has the form

2(AY) - Z(A)
i
T 32n2g

/ d*x e""* 9, Tr(G U, U ™). (9)
My

The expression (9) 1s analogous to the corresponding one of
the Chern—Simons integral |

W (AY) — w(A)
_
_87'[2 M3

| y
| / dx e Tr(U~;UU9,;UU 3 U),
M3

dx 7%, Tr(d; UU ™~ Ay)

24572



lopological invariants in Yang-Mills Theory

the divergence of the axial U(1) current J;' = ¥y, ysv,
in four dimensions it 1s given by the

G ]/j‘ — _ eMY4 Tr(G 1y Gip)

16772

1 2
_ _Hgﬂwau Tr(AvakAp _ zggAvAkAp).

Similarly, the non-Abelian anomaly appears in the covariant divergence of the non-Abelian

left Jo& = )1y, v50"¢y, or right J4F = ¢ry,v50"k handed currents, such as

1
2472

1
Dt = — o0, Trlo®(A,00A, — iZg A, A\A)]




lopological invariants in Yang-Mills Theory

the divergence of the axial U(1) current J;' = ¥y, ysv,
in four dimensions it 1s given by the

G ]/j‘ — _ eMY4 Tr(G 1y Gip)

16772

1 2
= —— vy, Tr(AvaAAp - iggAvAkAp).

472
(12)

the Uxs(l) anomaly 1s given by a 2n-form, the higher-
dimensional analog of Eq. (12):

dx JA Tr(G”) =dwy,—1,

where w»;,,_1 1s a generalization of the Chern—Simons form
to 2n — 1 dimensions

1
-1 (A) = n/ dt Tr(AG! ).
0

A =—igAf L,dx*, with G, =tG + (t* —1)A“.



Anomalies and Topological invariants in Yang-Mills Theory

gauge variation ot the wy;, 1
1
0wWp—1 = dwzn_za (21)

where the (2n — 2)-form has the following integral represen-
tation

1
wén_z(S, A)=n(n — l)fo dt (1 —1) Str(é d(AG’f_z)),

where & = £ L, 1s a scalar gauge parameter and Str denotes
a symmetrized trace. In D = 2n — 2 dimensions, the non-
Abelian anomaly 1s given by this (2n — 2)-form, the higher-
dimensional analog '

D Jo " o wy, o (&, A).



New gauge anomalies in various dimensions

Our aim 1s to generalize the above construction

by defining invariant densities in higher dimen-
sions D=2n+3=5,7,9,11, ...:

I7,43(A) = Tr(GntS) = doy,12,

where we are using a shorthand notation for the 3-form
field-strength tensor G3 = dA, + [A, Ap] of the rank-2
gauge field Ar = —igAZvLa dx* ANdx’ and Gz =1tG3 +
(1> — 1)[A, A2]. The 2n + 2)-form o9, is

1

0212(A, Ap) = / dt TI‘(AG?_IG3I 4.
0

+ G 1AGs + Gl Ay).

dimensionality of this density is [mass|™" ™) and it can be used as an addition to the

(2n+2)-dimensional Lagrangian density

: /
2 Oont2(A, Az),
Fni=2 Map 2




Topological invariants in various dimensions

We also found a second series of exact 6n-forms con-
structed only 1n terms of the 3-form gauge field-strength G3:

Agn = Tr(G3)*" = dmgn_1,

where for the (6n — 1)-form one gets the following expres-
sion:

1
Ton—1(A, Az) =2n / dt Tr(A2G3' ).
0

These forms are defined in D =6n — 1 =5,11,17, ... di-
mensions.

Our next aim is to construct possible gauge anomalies o,

2n—+1
and 7761;1—2 which follow from the generalized densities
02542 and g, —1 . These potential anomalies are

defined through the relation analogous to (21):

Slide 24



New gauge anomalies and topological invariants in various

dimensions
o3 (€1, A) = Tr(£,G),

1
od (£1, A) = Tr<§1 d(A dA + 5,43)),
where §1 =&, L,dx" 1s a 1-form gauge parameter

and when the gauge transformation 1s performed by a scalar
gauge parameter &, then

1
O'Sl(s,A,Az)ITI‘(Sd(AdAz—I—AQdA—I—§A2A2
1AA A—I—lA A?
p e T |

1ts descendant (8051 = do;)

of(&,n, A) =Tr((dEn+ndé —Edn—dn&)dA,)

may represent a potential Schwinger term in the correspond-
ing gauge algebra



New gauge anomalies - transgression

In conclusion let us compare the Pontryagin—Chern—Simons
densities Py, wr,—1 and win_z in YM gauge theory with
the corresponding densities 175,13, 02,472, azln 41 and Ag,,,

T6n—1, 7T61n_2 in the extended YM theory. The new char-
acteristic classes are local forms defined on the space—time

manifold and constructed from the curvature 2-form G and
3-form Gj:

i3 =Tr(G"G3) = dogpya,
Agn = Tr(G3)™" = dmen—1.

the existence of these potential anomalies 1s based on the
fact that they fulfill Wess—Zumino consistency conditions.
At the same time, these invariant densities constructed on
the space—time manifold have their own independent value
since they suggest the existence of new invariants character-
1zing topological properties of a manifold.



New [lopological Field Theories

Z(M, M}, C7 R) = / DAD Agei* I omns2 (A2 T Ty e 95 2 s 4
2,]
where 0,1 is defined in (1.6) and k is a parameter, or on three-dimensional manifolds
Z(M,Mi,C R) = / DAD Age® Jas VaussAa) TT T b A0y e 4
1,]
as well as on higher dimensional ones, 9,3 is defined in (1.8). In particular, for the

partition function Z(M) in four dimensions we get

and in the large k limit the contribution to the path integral is dominated from the points

of stationary phase which are, in the given case, the flat connections

G=dA+A2=0, G3=dA,+][A, A)]=0.



1
Pzn —= Wopn—1 == Woy,_o.

Therefore we shall perform the following transgressions:

Popta = Yopiz = w%m,
EQn—I—G — ¢2n—|—5 — gb%n—l—éla

1
Tonts = pPongr = Pon+6-



Thank You !
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