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Gravity is very successfully described by the General Relativity
theory of Albert Einstein. It is one of the best and most beautiful
theories we have. Still, we are stubbornly trying to modify it.

There are mysteries in cosmology. What are the Dark Sectors?
Was there inflation, and if yes then how? And if the problems such
as H0 tension are real, what are we making out of that?

On top of that, there are singularities, inherent and unavoidable.
They are mostly hidden whenever one can imagine. But don’t we
want to have a better understanding of what is going on?

And let alone the puzzle of quantum gravity, together with our
pathological belief in the mathematically horrendous quantum field
theory approach.
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And the amazing news we get is that it is extremely difficult to
meaningfully modify the theory of General Relativity.

Simple models such as f (R) are almost nothing new, and can be
reformulated as an extra universal force mediated by a scalar field
on top of the usual gravity. Deeper attempts at modifying it
require exquisite care to not encounter with ghosts, or other bad
instabilities, or total lack of well-posedness, or no reasonable
cosmology available, or.... you name it!

And having the miserable lack of an undoubtful success, it makes
all the good sense to try whatever crazy new geometry one can
think of. And let it lead us to a better understanding.

Alexey Golovnev Centre for Theoretical Physics British University in EgyptModified Gravity and Strong Coupling Issues



On top of the usual curvature, one can consider two other
geometric quantities related to the spacetime connection:

torsion Tα
µν = Γαµν − Γανµ

and
nonmetricity Qαµν = ▽αgµν .

Then it is easy to see that

Γαµν =
1

2
gαβ (∂µgνβ + ∂νgµβ − ∂βgµν)

+
1

2

(
Tα

µν + T α
ν µ + T α

µ ν

)
− 1

2

(
Q α

µν + Q α
νµ − Qα

µν

)
.

One possible alternative approach is to describe gravity in terms of
different geometry.
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Metric-compatible teleparallel gravity

In the orthonormal-tetrad-based description of gravity, one can
naturally have torsionful connections without curvature or
non-metricity by

Γαµν = eαA∂µe
A
ν .

Note the zero spin connection! (pure tetrad approach)
At least locally, every connection of this sort can be written like
this, for some particular tetrad.

If we go beyond TEGR, or just reproducing GR, this framework is
about more than just a metric. In general, different tetrads for the
same metric are physically different objects.

Alexey Golovnev Centre for Theoretical Physics British University in EgyptModified Gravity and Strong Coupling Issues



Recall that the quest for TEGR action can start from observing
that a metric-compatible connection Γαµν with torsion differs from

the Levi-Civita one
(0)

Γ α
µν by a contortion tensor:

Γαµν =
(0)

Γ
α
µν(g) + Kα

µν

which is defined in terms of the torsion tensor Tα
µν = Γαµν − Γανµ as

Kαµν =
1

2
(Tαµν + Tναµ + Tµαν) .

It is antisymmetric in the lateral indices because I ascribe the left
lower index of a connection coefficient to the derivative, e.g.
▽µT

ν ≡ ∂µT
ν + ΓνµαT

α.
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The curvature tensor

Rα
βµν = ∂µΓ

α
νβ − ∂νΓ

α
µβ + ΓαµρΓ

ρ
νβ − ΓανρΓ

ρ
µβ

for the two different connections obviously has a quadratic in K
expression in the difference. Then making necessary contractions,
such as Rµν = Rα

µαν and R = gµνRµν , we can come to

0 = R =
(0)

R +T+ 2
(0)

▽µ T
µ.

Here Tµ ≡ Tα
µα is the torsion vector while the torsion scalar

T ≡ 1

2
SαµνT

αµν

is given in terms of the superpotential

Sαµν ≡ Kµαν + gαµTν − gανTµ.
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Due to the basic relation above, the Einstein-Hilbert action

−
∫
d4x

√
−g

(0)

R is equivalent to the TEGR one,
∫
d4x∥e∥T.

They are the same, up to the surface term B ≡ 2
(0)

▽µ T
µ.

Of course, this equivalence disappears when we go to modified
gravity, for example the f (T) gravity:

S =

∫
f (T) · ∥e∥d4x .

Actually, the work of varying this action can be simplified a lot by
using this observation.

But many problems await us!
The annoying strong coupling issues...
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After some little exercise, the equation of motion can be written as

f ′
(0)

Gµν +
1

2

(
f − f ′T

)
gµν + f ′′Sµνα∂

αT = κTµν

with Tµν being the energy-momentum tensor of the matter.
This is a very convenient form of equations!

If f ′′ ̸= 0, then the antisymmetric part of the equations takes the
form of

(Sµνα − Sνµα)∂
αT = 0.

It can be thought of as related to Lorentzian degrees of freedom.

And we see that solutions with constant T are very special and do
not go beyond the usual GR, unless we are to study perturbations
around them.
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The number of degrees of freedom is not very well known. And the
main reason is a variable rank of the algebra of Poisson brackets of
constraints.
But, what is for sure, is that there must be at least one extra mode.

Still, the trivial Minkowski eAµ = δAµ is obviously in a strong
coupling regime for a model with f (0) = 0 in vacuum. Indeed,
then T ∝ (∂δe)2, and for the quadratic action we just take
f (T) = f0 + f1T+O(T2) which means accidental restoration of
the full Lorentz symmetry, and linearised GR.

Therefore, the standard properties of gravitational waves are there.
This absence of contradiction to experiments is highly problematic.
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Cosmology and the degrees of freedom

f (T) gravity is very popular for cosmology with a simple solution
of the form

ds2 = a2(τ)
(
dτ2 − dx idx i

)
in terms of the following tetrad Ansatz:

eAµ = a(τ) · δAµ .

How can one do cosmological perturbations?
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It is not enough to choose just some possible tetrad for the most
general perturbed metric like

e∅0 = a(τ) · (1 + ϕ)

e∅i = 0

ea0 = a(τ) · (∂aζ + va)

eaj = a(τ) ·
(
(1− ψ)δaj + ∂2ajσ + ∂jca +

1

2
haj

)
.

Instead, one must use the most general Ansatz for the tetrad
perturbation

e∅0 = a(τ) · (1 + ϕ)

e∅i = a(τ) · (∂iβ + ui )

ea0 = a(τ) · (∂aζ + va)

eaj = a(τ) ·
(
(1− ψ)δaj + ∂2ajσ + ϵajk∂ks + ∂jca + ϵajkwk +

1

2
haj

)
.
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Under infinitesimal diffeomorphisms xµ → xµ + ξµ(x)
with ξ0 and ξi ≡ ∂iξ + ξ̃i , one can simply derive the following
transformation laws:

ϕ −→ ϕ− ξ0
′ − Hξ0

ψ −→ ψ + Hξ0

σ −→ σ − ξ

β −→ β − ξ0

ζ −→ ζ − ξ′

ci −→ ci − ξ̃i

vi −→ vi − ξ̃′i .

Gauge invariant combinations and possible gauge choices are
obvious.
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After careful calculations, there are no new dynamical modes in
linear perturbations!
Out of 6 new variables: 5 constrained variables and 1 dropping off,
from every equation (”remnant symmetry”?).

Therefore, no new degrees of freedom at the linear level. Hence,
the strong coupling problem. Predictions are not reliable.

A very interesting unreliable prediction is non-zero gravitational
slip:

ϕ− ψ = −12fTTH(H ′ − H2)

fT
ζ

where

△ζ = −3

(
ψ′ + Hϕ− H ′ − H2

H
ψ

)
.
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In order to see the extra dynamical modes, one might go for other
backgrounds.

Due to the ”remnant symmetry”, we can take another solution for
Minkowski metric

eAµ =


cosh(λ) sinh(λ) 0 0
sinh(λ) cosh(λ) 0 0

0 0 cos(ψ) − sin(ψ)
0 0 sin(ψ) cos(ψ)


with arbitrary functions λ(t, x , y , z) and ψ(t, x , y , z).

It has T = 0 and is a solution as long as f (0) = 0.
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For linear Lorentzian perturbations one gets equations for the
perturbations of T

−ψzTt − λyTx + λxTy + ψtTz = 0,

ψyTt − λzTx − ψtTy + λxTz = 0,

−λyTt − ψzTx + λtTy + ψxTz = 0,

−λzTt + ψyTx − ψxTy + λtTz = 0.

In generic enough a situation we get T =const. However, in case
of only a boost or only a rotation, perturbations of non-constant T
are possible.
In particular, for λ(z) and no rotation, we get a new mode with
strange Cauchy data of C1(y , z) and C2(x , y , z).
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The Hamiltonian analysis of f (T) is tricky. There are two
contradictory claims (I give it in 4D):
1. It has 5 d.o.f., i.e. three extra propagating degrees of freedom.
(Li, Miao, Miao 2011; Blagojevic, Nester 2020)
2. It has 3 d.o.f., i.e. one extra propagating degree of freedom.
(Ferraro, Guzman 2018)

The last version of the first claim is probably the most accurate
one, even though not without its shortcomings. In particular, no
attention is payed to singular surfaces in the phase space, jumps in
the ranks of Poisson brackets algebra, and so on.
At the same time, to the best of my knowledge, no one has ever
seen the full set of three new modes in practical calculations.
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The main mistake in the second claim was in neglecting the spatial
derivatives of T in the Poisson brackets.
And indeed, our ”almost one” new mode was seen around the
non-trivial Minkowski background with T = 0.

In cosmological tasks, the T scalar does naturally have a time-like
gradient, and therefore can be taken for a time variable.
Does this mean a possible existence of preferred foliation in this
case?

Some more discussion on these teleparallel issues see in my
conference (XII Bolyai-Gauss-Lobachevsky Conference (BGL-2024):

Non-Euclidean Geometry in Modern Physics and Mathematics)
proceedings paper
A. Golovnev. Degrees of Freedom in modified Teleparallel Gravity.
Ukrainian Journal of Physics 69 (2024) 456
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Riemannian-geometry-based modified gravity

It’s probably enough of complicated stuff. Let’s look at more
elementary models, purely in terms of Riemannian geometry.

One of the nicest modifications is f (R) gravity

S [gµν ] =

∫ √
−g · f (R).

If to Taylor-expand around zero curvature, one can talk about

pure quadratic f (R) = R2

and full quadratic f (R) = R + R2 cases.
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Recently, in the paper [A. Hell, D. Lust, G. Zoupanos. On the
Degrees of Freedom of R2 Gravity in Flat Spacetime. Journal of
High Energy Physics JHEP02(2024)039] the gravity model of
”pure R2” type was considered. Namely, the Lagrangian density is
R2 with no linear term. Two different results were reported about
the linearised around Minkowski space limit.

Substituting the standard parametrisation of cosmological
perturbation theory into the action, no dynamical modes survive
the limit.

With the spin-projector parametrisation of

hµν = vector and tensor contributions

+

(
∂µ∂ν −

1

4
ηµν□

)
µ+

1

4
ηµνλ

a scalar mode seems to survive...
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A simple illustration

The point is that making a derivative substitution or fixing a gauge
directly inside the action does generally change the model at hand!

As a very simple example, let’s look at the Proca field:
L = −1

4FµνF
µν + m2

2 AµA
µ.

If we parametrise Aµ = AT
µ + ∂µϕ with ∂µAT

µ ≡ 0, it is all right at
the level of equations of motion. However, being substituted into
the action, it changes the model due to higher derivative nature of
the longitudinal mode.

If we do it as Aµ =
(
A0 , A

T
i + ∂iϕ

)
with ∂iA

T
i ≡ 0, similar to

cosmological perturbations, then it is fully all right if in
perturbation theory due to conditions at spatial infinity.
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The idea of the Stückelberg trick is that instead of one vector field
we may work with one vector and one scalar, Aµ −→ Aµ + ∂µϕ,
such that the new system enjoys a gauge symmetry of
ϕ −→ ϕ+ χ, Aµ −→ Aµ − ∂µχ.
The action then takes the form of

L = −1

4
FµνF

µν +
m2

2

(
AµA

µ + 2Aµ∂µϕ+ (∂µϕ)∂µϕ

)
with the equations of motion

∂νF
νµ +m2 (Aµ + ∂µϕ) = 0, □ϕ+ ∂µA

µ = 0.

All in all, the physical vector Aµ + ∂µϕ has got absolutely the same
dynamics as the vector of the initial non-covariant model.
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Suppose that, instead of introducing a new variable, we do a
reparametrisation of Aµ = AT

µ + ∂µϕ, ∂µAT
µ ≡ 0. This

reparametrisation is a bit redundant. In case of separating a
3D-longitudinal mode, we may fix such redundancy by spatial
boundary conditions, but we always treat the time differently. It
can also be thought of as an (incomplete) gauge fixing in the
model defined by the Stückelberg trick. This is all right at the level
of equations of motion.
However, being done directly inside the action, it leads to

δS =

∫
d4x

((
∂νF

νµ +m2AT µ
)
δAT

µ −m2(□ϕ)δϕ
)
.

It describes more freedom than before, even for the physical
variable AT

µ + ∂µϕ.
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Coming back to pure R2 gravity around Minkowski metric...

For gµν = ηµν + hµν , to the linear order, the equation

2R · Rµν −
1

2
R2 · gµν + 2 (gµν□−▽µ▽ν)R = 0

reduces to ∂µ∂νR = 0 for the scalar R = (∂µ∂ν − ηµν□) hµν .

We then see that the only information is that △h00 is uniquely
given in terms of other metric components, up to a possible global
addition of b + cµx

µ. Up to the freedom of harmonic functions
too, it fixes one of the variables.
Therefore, indeed, there are no dynamical degrees of freedom, one
constrained physical mode, and all the rest is pure gauge.
In this limit...
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In the language of cosmological perturbation, the vector and tensor
ones are obviously in the pure gauge sector, and only the scalars
survive. It can be taken as

gµνdx
µdxν = (1 + 2ϕ)dt2 − (1− 2ψ)δijdx

idx j

with R = 6□ψ + 2△ (ϕ+ ψ).

In philosophy of perturtbation theory, taking the ∂µ∂νR = 0
equation as simply R = 0, we get

3□ψ +△ (ϕ+ ψ) = 0.

With no more information available, we should take ψ as also a
pure gauge, and ϕ then being the only physical mode, which is
constrained.

Nota an interpretational aspect of it, though!
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A spin-projector type of the trick can be taken as

hµν = vector and tensor contributions + ∂µ∂νΣ+ ηµνΨ.

We can immediately calculate R = −3□Ψ.
Even if, in perturbation theory, we treat the equation as R = 0, we
suddenly get a dynamical mode of □Ψ = 0.

The reason is that this representation of the metric is very
ambiguous. Let’s, for example, take the cosmological perturbations
metric above (which did not lead to any dynamical mode) and find
the trace and the double divergence of its perturbation for
presenting it in the spin-projector shape. We get
□Σ+ 4Ψ = 2ϕ− 6ψ and □2Σ+□Ψ = 2ϕ̈+ 2△ ψ.
In other words, the two Cauchy data for Ψ simply correspond to a
freedom of choosing presentation of the metric in this shape.
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At the same time, the action of
∫
R2 turns into 9

∫
d4x · (□Ψ)2

and produces even a 4-th order equation of motion □2Ψ = 0 which
cannot be explained by ambiguity of parametrisation.
In this case, the field Ψ was not given any extra derivatives in the
action, however the operator of ∂µ∂ν had effectively been removed
from it producing □R = 0 instead of ∂µ∂νR = 0. Therefore, we
get more solutions than the initial model used to have. It is yet
another example of problems with substitutions right into the
action.

More discussion and various examples are in my paper
A. Golovnev. On the degrees of freedom count on singular phase
space submanifolds. International Journal of Theoretical Physics
63 (2024) 212
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A few words against extended Hamiltonians

For electrodynamics, the total Hamiltonian density

HT =
1

2
π2i + πi∂iA0 +

1

4
F 2
ij + λπ0,

with λ being a Lagrange multiplier, produces then the equations of
motion{

Ȧ0 = λ

Ȧi = πi + ∂iA0
and

{
π̇0 = ∂iπi
π̇i = ∂jFji

with the constraint
π0 = 0.

As long as we take the primary constraint as an equation rather
than an initial datum, this system totally reproduces the
Lagrangian dynamics of Aµ as well as the definition of momenta
π0 = 0 and πi = Ȧi − ∂iA0 = F0i .
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The extended Hamiltonian density is

HE =
1

2
π2i + πi∂iA0 +

1

4
F 2
ij + λπ0 + λ̃∂iπi

with the equations{
Ȧ0 = λ

Ȧi = πi + ∂iA0 + ∂i λ̃

{
π̇0 = ∂iπi
π̇i = ∂jFji

{
π0 = 0
∂iπi = 0.

We’ve got twice the correct amount of gauge freedom, and totally
got rid of the Gauß law. The definition of the spatial components’
momenta is also lost.
What can be done is a total redefinition of the model. We say that
Fij are still considered physical, but not the mixed components of
F0i . Instead of the latter we take πi as physical, forgetting its
definition in terms of the fields. If in the Lagrangian equations we
substitute F0i by πi , it yields ∂iπi = 0 (Gauß law in absence of
charges) and π̇i = ∂jFji .
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The same happens in general. We artificially enhance the space of
variables by pronouncing the momenta independent. After that we
add yet another gauge symmetry by simply calling anything
unphysical as long as it does not commute with any of the
first-class constraints. If the constraints are of the first class, then
in each canonical pair of variables they can involve only one
combination and transform another one. Therefore, there must
exist a gauge-invariant combination which can then serve as a
substitute for the corresponding field. And by the very definition of
the new gauge symmetry, the dynamics of invariant variables are
not changed by adding the secondary constraints to the
Hamiltonian.
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The same is about GR. There are six physical modes, two of which
are dynamical and four constrained. One can say that the four
constrained modes get rewritten as combinations with momenta,
but then it contradicts the geometric picture of test particles
following the geodesics.

When generalising a model or studying problematic loci of the
phase space, one should not forget about the differences. If there
was an accidental gauge symmetry in a linearised model, extending
the Hamiltonian would take us even farther away from the full
model. This is not surprising, of course, because we then
artificially extend the accidental symmetry which is not present in
the full theory.
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Conclusions

Strong coupling cases are problematic but very interesting at the
same time.

We need a better understanding of what is going on, especially for
any progress in modified teleparallel gravity research.

One of the most important tasks is to properly understand the
Hamiltonian mechanics of constrained systems, not just as a mere
recipe.

Thank you!
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