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. Studying QFT is hard: pertubative methods, renormalization, infinite
numer of degrees of freedom. Usual guide: !

. There are cases in condensed matter physics when certain properties of
a gapped systems depend only on topology!

- We can ask for a nontrivial field theory that still works with finite
dimensional Hilbert spaces.

- TQFT



. One physical example: Chern Simons! Take example of SU(2) gauge

group and A is a gauge connection, that is locally a Lie algebra valued
one form.

S=JTr(AAdA+A/\A/\A) = F=0

. Is this theory trivial? No! It is used in condensed matter do describe QHE,
in knot theory to compute Jones polynomials and in 3D gravity.

. Wilson loop observable — can detect nontrivial topology (anyons)!
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. Previous consideration was classical, can we go to level?

- We will use a formal mathematical approach, first introduced by Atiyah
[Atiyah ‘89].

. ATQFTisa (strong) symmetrical monoidal funtor from the category of
cobordisms to the category of vector spaces.

. This approach has an advantage that is well accessible to pure
mathematics; it does not require one to deal with path integrals.
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Def: A category consist of objects (a, b, c, ...) and arrows (f, g, i, . . . ), together with
rules:

For every arrow f, there exist objects dom(f), cod(f)
Forarrowsf:a — band g : b — cthereisanarrowgef:a — ¢

For every object a thereisanarrow 1, : a — a

Composition is associative

For every arrowf: a — bwehavefol, =1, of

Important example: Vectc: objects are complex vector spaces, arrows are linear maps
between vector spaces.

Functor: mapping between categories (think of group representations).
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. In two dimensions, it is well-known that we can generate the whole
theory from the following cobordisms



* Everything should depend only on “topology’!

1

-2 Commutative Frobenius algebra



What happens in three dimensions?

Three manifolds are much harder to study. Also, objects of 3Cob are closed,

oriented surfaces, with much richer structure than § I

The main character in our story will be torus, so lets focus on it. First, define a
mapping class group as the group of orientation preserving homeomorphisms
modulo isotopy.

It is a well known fact that, for torus, this group is SL(2,2).



* Righthanded Dehn twists on a:

» Matrix representation

1 1 1 0
Da._(o 1) and Db._<_1 1)

« Another useful set of generators of SL(2,7), satisfying S* = (ST)>, S* = Id
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. Motivation of our work: faithful TQFT. In dimension one, almost all TQFTs are
faithful [Telebakovi¢ Onic¢ ‘20]. In two dimensions, there exists a faithful TQFT
[Telebakovi¢ Oni¢, Petri¢, Gajovi¢ 20]. What happens in three dimensions?

. Part of this story is well-known: extended TQFT. From physical perspective,
they are interesting and important. Mathematically, they are based on a
structure of a modular tensor category. Example: Reshetikin-Turaev (RT)
TQFT.

. Unfortunately, those TQFTs are not faithful [Funar ‘12], there exist some torus
bundles thar are not distinguished by RT invariants. We therefore seek to find

some representations of SL(2,Z) that are not connected with MTC.



- Actually, similar to the clasification of 2D TQFTs in terms of Frobenious
algebras, 3D TQFTs can be clasified using J algebras [Juhasz ‘18]. However, J
algebras are much harder to work with and we therefore seek to define a
restricted TQFT.

. We consider only a subcategory of 3Cob. Today, we focus on fMCG.
peD,@1)=0((1QD,).
peD,Q@1)=-1QD,).

. General hint: thick torus! @




 Here we have: the identity, the pairing /3, the copairing y and the mapping cylinder.

« Examples of representations of SL(2,7) that are able to distinguish between torus

bundles:
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Construction of restricted TQFT

- Examples of commutative Frobenius algebras: centres of group algebral!

For Dg group, we get the following multiplication.
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- We take the following representation for MCG:

0 0 —e;? 0 —Lliem% 0 0
<=0 0 0 0 0 0
0 0 0 e 0 —ivEe ¥ -t
Da=| o —le% % 0 - 0 0
0 0 0  —iv2e % 0 —2”%  —ie" s
0 —Z;\g “f;; 0 —je s 0 0
0 0 0 —7 0 —Lie=% 0
0 V2% 0 0 0 0 0
0 0 0 -l % 0 i 0
—= 0 0 e~ 0 —iv/2e” % 0
Dy = 0 0 e~ 0o g 0 —£
“Lie= % 0 0 —iv2e % 0 —2¢~ % 0
0 —E=r 0 le® 0 ie ¥
0 0 —SN%; 0 —Lie=% 0 0
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. We indeed have a restricted TQFT. Moreover, consider two torus
bundles, determined by two matrices

1 21 106 189
A:<21 442)’ B:<189 337)
- We can easily calculate that we have
1=p30o(p(A)®1)oy#Bo(p(B)®1)oy =2

. We can distinguish between two torus bundles that are not distinguished
by RT invariants.



« Along these lines, we wish to introduce the unit € and the counit 7
(resulting in feMCG category, where lens spaces play a role), and finally
multiplications and comultiplications (resulting in a ueMCG category).

* |n the former case, one can show that the aditional relations are

Ppo(1®¢)=n
D,oe=¢

 The way we construct those restricted TQFT’s is similar to a dimensioan|
reduction from three to two dimensions, but with one important difference.

We do not assume that our spacetime is of the form 2 X Sl, but rather we
have a nontrivial a la Hopf fibration.



Thank you for your attention!



