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Open Questions

@ Do gravitational waves exist in a spacetime described by non-metric gravity?

@ What is their nature (scalar, vector or tensor) and polarization (transversal and/or longitudinal).
© Are they massive or massless?

@ What is their velocity (c or less than ¢) ?

@ What helicity do they carry?

@ There are similarities between non-metric and teleparallel gravity?

Any good theory of gravity must predict the existence of gravitational waves.

In General Relativity, free structure-less particles move along timelike geodesic and their relative
acceleration or tidal force is governed by geodesic deviation equation. Gravitational waves are
massless, transverse and tensor waves of helicity two, travel at speed ¢ and reproduce the two
polarizations, plus and cross modes.
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Curvature, Torsion and Non-Metricity |

The most general affine connection I'“,, in metric-affine geometry, where curvature, torsion and
non-metricity do not vanish, can be uniquely decomposed into three parts as

M = {;u} + K% + L%,

where {gfy} are the Christoffel symbols defined as

1 (o3
{;fy} = Egp (anMO( + augwx - aaguy)

K<, is the contorsion tensor defined through the torsion tensor T,

T = 20 )

as

a 1 @
K % = Eg A (T,UAV + TVA;A + T)\;U/)
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Curvature, Torsion and Non-Metricity |l

antisymmetric in the first and third indices
Ka;w = _Ku;wc

whose antisymmetric part is given by

(e} 1 «
Ko =5 T

while LO‘W is the disformation tensor, symmetric in the second and third indices
a 1 al
L w = —Eg (Q[L)\V + Qy)\u - Q)\/J,V)
1 . o
= 5% — Q)

L%y =0
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Curvature, Torsion and Non-Metricity |lI

here Qu,. is the non-metricity tensor defined as

Qupr = Va&ur = Oagur — 0880 — 17,850 (9)

symmetric in the last two indices
Qa[,uu] =0 (10)

The non-metricity scalar is defined as

1 1 1 1 =
= _ _ aBy _ VB _ o «
= 4Qaﬂ'yQ + 2Qo¢ﬁ’yQ + 4QaQ 2QaQ

(11)
17 ¢ B B
=" (L5l — L0l

while the two traces of non-metricity tensor are
Qo = Q" (12)
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Curvature, Torsion and Non-Metricity 1V

and

604 = QM,uoc

Therefore the contractions of the disformation tensor L’\OZﬁ become

1 1 ~
LAQ}\ _ _EQQ , LaA)\ _ EQQ _ Qa

The non-metricity conjugate tensor is defined as

o 1 90Q
T 350"
Symmetric in the last two indices
Paul/ = Pa(uu)
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Curvature, Torsion and Non-Metricity V

The superpotential P?,,, defined in Eq. (15), thanks to the expression of the non-metricity scalar Q
given in (11), can be written as

@ 1 « [e% « Ao «
P, = Z[_Q /“’+2Q(M V)+Q 8w —Q g’“’_(s(“Qy)]
1 o 1 a A 1 a
= fEL w Tt Z(Q -Q )g;w - 25(/4QV) (17)

This allows us to write the non-metricity scalar Q as

Q = Qauupauy (18)

S. Capozziello Gravitational Waves in Non-Metric Gravity 7/41



Curvature, Torsion and Non-Metricity pictures

S. Capozziello Gravitational Waves in Non-Metric Gravity 8 /41



Metric-affine geometries

Metric teleparallel

theories

Minkowski
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_ w =0
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o _ it
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Qo #0 T, #0 il
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The Geometric Trinity of Gravity and its extensions

f(R)

Extended Geometric

Trinity of Gravity f(é _ B)

f(T - B)

B=2v,T*
~ Geometric Trinity of
Gravity
STEGR = /dAT\/*QT SstecR = /d"z\/Tgé
SR P R G S 18 e 1o S 13 o 18 2
= Z(fT Topw — o TH) + TT = —ZQWUQ ak 5Q‘MQ + ZQMQ _ §QuQ
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Consequences of non-metricity |

Consequences of non-metricity Qa8 = V,8ap # 0

@ It is not possible to raise and lower indices of an arbitrary four-vector A% under the covariant
derivative

8asV,A” £V, A, thatis g.sV,A° = V,A, — A’ Quap (19)
therefore it is no longer true that
AV, A% = AV, A, butitis A,V ,AY = A°V, A, — A%A° Qup (20)

@ The metric tensor g, is not covariantly constant, that is, in general, for two vector A* and B“
parallel transported along a curve y , their inner product does not remain constant under parallel
transport along ~, whose tangent vector is t, namely

Vi (AB,) = Vi (8apA“B") = ALV B+ By V A* +A“BV gos = A*B t7V . 8.5 # 0 (21)
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Consequences of non-metricity |l

Then the non-metricity, in general, does not preserve the length of vectors and the angles
between two vectors parallel transported along the curve v because

L(A) = |A| = VA2A, = VA #0
and

A-B
cosf = — Vicosf #0
|AlB| ‘
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Symmetric Teleparallel Gravity

The Symmetric Teleparallel Gravity (STG) is a particular class of non-metric theories of gravity where
curvature and torsion of the affine connection vanish, and therefore it is a formulation of gravity
described only in terms of non-metricity, i.e.

_ pA A A B8 A B A
0=R"o 7F#07DfF#V70+FWF 51,7FWI’ o (24)
and
TO‘W =0 (25)

The STG connection becomes

ra/“’ = {/:xu} + Lal“’ (26)

Furthermore the non-metricity tensor Q.. satisfies the following Bianchi identity

Via Qs =0 (27)
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The coincident gauge |

In STG theories, it is always possible to trivialize the connection, that is, we can choose the so-called
coincident gauge where

r« =0 (28)
Indeed, the flatness of connection makes it integrable and therefore it can be written as
M = (A")", 0N, (29)

pv

with the matrices A7, € GL(4,R), i.e., belonging to the general linear group. The absence of torsion
of the connection gives

5‘[[3/\71,] =0 (30)
This implies that the transformation can be parameterized with a vector £ as
A, = 0,6 (31)
Finally the connection is given by .
re,, = %auaugﬁ (32)
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The coincident gauge |l

So it is always possible to choose a coordinate system, £# = x*, such that the connection vanishes.
Physically, this means that the origin of tangent space coincides with the origin of spacetime. Hence,
in concident gauge, we have

A

fo  =—L° (33)

nv nv

o)

that is, the covariant derivative V, associated to the connection I', becomes the partial derivative 9.
It is worth noticing that Vg, # 0, while only D,g,,, = 0, where D, represents the covariant
derivative associated to the Levi-Civita connection fO‘W. We will use the coincident gauge when we
will linearize the connection.

and the non-metricity tensor becomes
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f(Q) non-metric gravity

f(Q) non-metric is an extension of STEGR expressed in the Palatini formalism, where g, and '*
are independent dynamic variables, and f is an analytic function. The action is

1
Sf(o) = /Q d4X {@\/jgf (Q) + )‘aﬂuuRaﬂuv + )‘awj Ta,uz/ + Vv 7g£m (g):| (35)

where k2 = 87G/c* and A 2 = X" A 1 = \") are Lagrange multipliers, i.e. other 96 plus
24 independent scalar fields. Raﬁ’uv and T“W are the Riemann tensor and the torsion tensor,
respectively. L, is the material Lagrangian.

S. Capozziello Gravitational Waves in Non-Metric Gravity 16 / 41



Field Equations in f(Q) gravity |

Varying the action S¢(g) with respect to the metric tensor g,

9g5r(Q) = 0

and requiring that the variation of metric tensor vanishes on the boundary of domain €2, we obtain the

field equations of f(Q) gravity in presence of matter. They are second-order nonlinear PDE

am

1 (03
——Va (\/jngPa;w) - Eg;wf + fQ(RuozBan'B -2Q BMPOLBU) = HzT#u

Varying the action (35) with respect to the STG connection [

pvr

5r5f(Q) =0

the principle of last action

(36)

together with the vanishing of the variation of connection on the boundary, lead to the connection

equation of motion of f(Q) gravity

S. Capozziello
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Field Equations in f(Q) gravity Il

The constraints of symmetric teleparallel theory are obtained by the vanishing of the following
variations w.r.t. Lagrange multipliers, that is

6>\a6uV5f(Q) - O = Raﬁl“j - O

while
5)\aws,c(Q) =0= T(XHV =0

S. Capozziello Gravitational Waves in Non-Metric Gravity 18 / 41



Linearized equations in coincidence gauge |

Let us now linearly perturb Eq. (36) in absence of matter in the coincidence gauge. At first order in

metric perturbation h,,,
Euv = Nuv + h;ux (40)

with 7,,,, the Minkowski metric tensor, the linearized field equations in vacuum of Eq. (36), setting
T#, =0, reduce to

f2(0) [Dh,w — (00, + 0aB,h®,) — 1 (Th — a9h°%) + 8H(’),,h} —0 (41)

where O = 19,05 is the standard d'Alembert operator. Taking into account the following
expansion of f(Q) in terms of non-metricity scalar Q

F(Q) = £(0) + fo(0)Q + O(Q?) (42)
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Linearized equations in coincidence gauge I

the assumption f(0) = 0 implies in parameter expansion h

The trace equation of Eq. (41), coinciding with the linearized trace of Eq. (36), becomes

and Eq. (41) reduces to

fF(QM =0
F(Q)® = fo(0)Q®

Oh = 9,03h*?

Oh —

28,00, + 8,0,h =0

a system of linear second order partial differential equations for perturbations h,,. The linearized
Eqgs, (46) are gauge invariant. That is, if we perturb them to first order via an infinitesimal

transformation x'* = x® 4 €*(x) , they remain unchanged.

S. Capozziello
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Linearized equations in any gauge |

Let us now generalize our results without gauge fixing. Then, to linearize the non-metric gravity
described by action (35), we perturb around the Minkowski spacetime both metric tensor and
connection to first order, considered independent, as

G = Nyw + hyw and T, =10 4 o) (47)
where |h,,| < 1 and [F*()] < 1, with
r@=o (48)

because the non-metric connection disappears at zero-order, when gravity is absent, to reproduce the
flat spacetime. In any gauge, at first order in metric and connection perturbations, we get the
following linear corrections for the non-metricity tensor Q. and its contractions

1
QL) = dahyy =270 ) (49)
QM = g7h — 21 (50)
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Linearized equations in any gauge I

= o (€]
QW = gghd — 21 (51)
— Qa(l) N aa(l) — 9% — aﬁhaﬂ + raﬁﬁ(l) . rﬁﬁa(l) (52)
for the disformation tensor L%,
1
e, = 50w — Oy + re,, (53)

and for the non-metricity conjugate tensor P,

« 1 [eY (e} (62 1 o

P F“/( ) = —76 h/“/ —|— a h l/) + (3 h 86/7 )77;w - Zé(ualj)h
1 o ,8() B a(1) 1 a (1) 1 arA ®
Z(r -r B )77/w - Er po T 55@'— Alv) (54)

Expanding f(Q) as
e F(Q) = £(0) + fo(0)Q + O(Q?) (55)
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Linearized equations in any gauge Il

we get
F(Q@ =70)=0 and QW =f(0)QW =0 (56)

£ = fo(0) and £ =0 (57)

assuming f(0) = 0, and f(Q)®) = 0 because in Q survive only second order terms in h,,, and F”‘E}V).
Field Eqgs. (36) in vacuum, at first order in h, become

da P, =0 (58)
while the connection Egs. (37), always at the first order, yield
8,0, P11 =0 (59)

which do not add any other constraints either on the metric or on the connection with respect to
Eq. (58). Then the linearized field Eqgs. (58) in vacuum in any generic gauge become

Oy — 20%0 oty + 0udh+ 20,7, = 29,7, = 0 (60)
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Linearized equations in any gauge IV
However, taking into account the absence of torsion connection ', it becomes symmetric, namely

T [I'] =0=T1%,,=0 (61)

nv

result already used in the previous equations. Since we are in a symmetric teleparallel theory of
gravity, the flatness of connection gives additional constraints on the connection, that is

1e% o « @ @ A oY A _
RBW[F]—O:>F o — T8 T TN 5 =T\ 75, =0 (62)
At first order, constraints (62) become
« 1) roa 1
r Bv,u( =T ﬁmu( ) (63)

and contracting « and p, we have
05, M = 8,1, W (64)

The symmetry of the connection implies
1 1
20,7, =205, (65)
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Linearized equations in any gauge V

Finally, from (65), Eq. (60) is further simplified taking the following form

| O =200 hajyy + 0udsh = 0| (66)

which are exactly the same differential equations obtained by linearizing the field equations of f(Q) in
coincident gauge in vacuum. Since we get the same first order Eqs. (66) in h, we can avoid

fixing the gauge.
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Wave solutions |

Wave solutions of Egs. (66) can be obtained in Fourier formalism. Then, field Eqs (66) in Fourier
space, according to the following waves expansion

hu(x) = (271_1)3/2/ a3k (hy, (K)e*> + c.c.) (67)

becomes

F, = k*h,, — kuk®hay — kyk®hoy, + Kk, h =0 (68)

while its trace Eq. (45) in momentum space reads as

k2h — k®kPhas =0 (69)

Now, let us suppose that the wave propagates in 4z direction with wave vector k* = (w, 0,0, kz),
where k? = w? — k2. Thus the wave expansion (67) reads as

1 - .
hu(z,t) = E/dkz(hw(kz)e’(“t_kzz) + c.c.) (70)
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Wave solutions |l

where c.c. stands for complex conjugate. The ten components of linear field Egs. (68), in k-space,

assume the form of a wave propagating along positive z-axis

Foo = (w® + Kk2) hoo + 2wk hos — w’h =0

For = kZhoy + wkzhy3 = 0

Foo = k?hoy + wkzhys = 0

Fos = wk; (hoo — hs3 —h) =0

Fi1 = k*h;1 =0

Fir = k*hi =0

Fi3 = wkyhor + w?hi3 = 0

Fay = k?hy» =0

Fos = wkyhoy + w?hys = 0

Fss = 2wk hos + (w? + k) hss + k2h = 0
Gravitational Waves in Non-Metric Gravity
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Wave solutions |l

while the linear trace Eq. (69) in the k-space becomes
w?hoo + 2wk hos + kZhss — (w? — K2)h =0 (73)
where h is the trace of metric perturbation h, in the momentum space given by

h = hoo — b1y — hyy — h33 (74)
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The case k? # 0

We first solve the set of Eqs (71), (72) and Eq. (73) for k2 = M? # 0. It is straightforward to obtain

the following solution

with four independent variables lN101, 7102, 7103 and 7100. Therefore, when k? # 0, we obtain four degrees
of freedom, which can be studied through the geodetic deviations.

S. Capozziello
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The case k2 =0

Then in the case k? = 0 the solution of Egs. (71),(72) and (73), where w = k,, becomes

7722 = _F711
7713 = _F701 (76)
7723 = _F702

hss = —2hos — hoo
with six independent variables i, 11, Fo1, hoo, hos and hoo. Therefore six degrees of freedom. Even

if f(Q) gravity seems to have four or six degrees of freedom, it is possible to show, from the geodesic
deviations, that only two propagate.
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Polarization via geodesic deviation equation |

The displacement n*, which lies on the three-space orthogonal to the four-velocity u®, can be chosen
as n* = (0, X¥) where X = (Xxx, Xy, Xz) is a spatial separation vector that connects two neighboring
particles with non-relativistic velocity at rest in the freely falling local frame. We set up a
quasi-Lorentz, normal coordinate system with origin on one particle and spatial coordinate x' for the
other. The spatial components of the equation of geodesic deviation to the first order in the metric
perturbation h,,, are

i = R (77)

where i, j range over (1,2, 3), and Rféj) are the electric components of the linearized Riemann tensor

associated to Levi Civita connection. Equivalently, in STG, if we use the non-metricity related
disformation tensor instead of the Riemann tensor, the geodesic deviation, in the local Lorentz frame,
reduced to

X-i = 28UL’ 0]0] Xj ) (78)
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Polarization via geodesic deviation equation ||

where the dot stands for the derivative with respect to coordinate time t and the hat over the indices

stands for the components in the local inertial frame. In any gauge, from the linearized disformation
tensor (53), we obtain

m_1 6
O, 50 = 5 (0,0 hay — 20,00y + 20,7 V) (79)
and from Eq. (63), we find
y 1 '
200L" 0" = 5 (0adst, + 0,0" has = 0 Dshes, — D, 0ah5) . (80)
that is, the contribution of linearized connection disappears. For our components in any gauge, we get

. 1 . . . .
28LIL, 0|0](1) = 5 ((9080/7’1- + 8j8’h00 — 8’(90/7@' — 61'80/7’ O) , (81)
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Polarization via geodesic deviation equation ||l

that is, exactly the opposite of the linearized Riemann tensor Rig}% expressed in LC connection. From
the gauge invariance of Eq. (81), we have

(1) = (1)

which allows us to put the equation (78) into following form

7 i 1) ¢
¥ = 204l g N (83)

which is the geodesic deviation equation in f(Q) gravity, in the proper reference frame of freely falling
particles where 8ULi 0‘0](1) is expressed in any gauge, as well as the metric perturbations h,,, in

Eq. (81). Eq. (83) can be regarded as the relative acceleration between two freely falling point
particles.
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Polarization via geodesic deviation equation IV

The linear system of differential Eqgs. (83), for a wave traveling along positive z-axis in a local proper
reference, reads as

Vx = —2h11,00Xx — 3h12,00Xy + 3 (ho1,03 — h13,00) Xz
Xy = —35M2,00Xx — 5h22,00Xy + 5 (hoz,03 — h23,00) Xz (84)
Xz = 3 (ho1,03 — M3,00) Xx + 5 (02,03 — h23,00) Xy + 3 (2h03,03 — h33,00 — h00,33) X

In the case k2 = M? £ 0, imposing the following initial conditions, the initial displacement
x(0) = R = (x%,x%,x?) and the initial relative velocity x(0) = 0, after double integration with
respect to t of the system (84), we obtain the solution

() =x2, () =x), x(t)=x3 (85)

which is not a wave, that is, there is no mode associated with k? # 0. That is, when k?> # 0, none of
the four degrees of freedom has a physical meaning.
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Polarization via geodesic deviation equation V

In the case k? = 0, that implies w = k,, by double integration with respect to t of the equation of
geodesic deviation to first order in the perturbation at fixed k,, for a single plane wave, the
system (84) yields as solution

Xx(t) = X3 — %(Z](Jr)xg + é(X)XS)em(tfz)
X)/(t) = Xg - %(h(x)xg — h(+)XS)elw(t—z) (86)
Xz(t) = Xz

where h;1 = A(H) and h1p = h(*). Hence, when k2 = 0, only two degrees of freedom of the
initial six survive. This solution describes the response of a ring of masses hit by a gravitational
wave. When we have the case h(X) = 0, from the solution (86), the effect of gravitational wave is to
distort the circle of particles into ellipses oscillating in a + pattern, while, in the case h(+) =0, the
ring distorts into ellipses oscillating in a X pattern rotated by 45 degrees in a right handed sense with
respect to it.
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Polarization via geodesic deviation equation VI

In summary, we obtain the well-know plus and cross modes, massless, transverse of spin 2,
typical of General Relativity, as seen in case (a) and (b) of the following figure,

Gravitational-Wave Polarization
0]

[}
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Polarization via geodesic deviation equation VII

and the gravitational wave can be put into the form

(2, t) = / dk, ;Jh )(w )+e,gxy)ﬁ(x)(w)}eiw<ffz)+c.c. (87)
where eﬁff) and egﬁ,) are the polarization tensors defined as
0 0 0 O 0 0 0O
1 o1 0 O 1 (o 01 0
(+) — = (<) — =
=500 -1 0 =510 10 0 (88)
0 0 0 O 0 0 0O

Hence, in f(Q) gravity, in any gauge, we obtain the same gravitational waves predicted by
General Relativity in the TT gauge. Finally a gravitational wave propagating along an arbitrary k
direction in f(Q) gravity, from Eq. (87), becomes

-,

by (x) = 3/2 /d3 (k) + e B )} eIt ce. (89)
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f(Q) and f(T) theories of gravity compared via gravitational waves |

Let us now take into account the action of f (T) gravity in presence of standard matter

1
Ser) = / P [sz(T) + Em] e (90)
Q K

where f is an analytic function anche T, the scalar torsion. The variation of the action (90) with
respect to the vierbein fields e?, yields the following field equations

4 g v
;80 (efrS,P7) +f(T)e, —4frTH,S,"" = 2K2T, P, (91)
where T, ? is the energy momentum tensor of matter defined as

~145(eLim)
e de?, '

T," = (92)

and the superpotential SP*” defined as

SP = S (KIP — gP Tgh 4 g T2) (93)
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f(Q) and f(T) theories of gravity compared via gravitational waves |l

by means of the torsion tensor T’jp# and the contortion tensor K"p#. In the weak field limit, we
expand the tetrad field around the flat geometry described by the trivial tetrad e?, = 67, as follows

e?, =06, +E%, (94)

where |E? | < 1. Then, the linear perturbation of field Egs. (91) becomes

FODEr = —2x27, 7O |, (95)
where 1
Ep,l/ = E;ul - inuyE . (96)
In vacuum, Eq. (95) gives B
OE?. =0 (97)

that is, exactly the same waves predicted by General Relativity. Therefore, both in f(Q) and in (T),
gravitational waves exist, they are massless-transverse tensor and the polarization modes reproduce
the plus and cross polarizations. From gravitational waves, f(Q) and f(T) gravities are
indistinguishable from General Relativity.
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Conclusions and Perspectives

@ Gravitational waves in f(Q) gravity are the same as in General Relativity, i.e., massless,
transverse, tensors with helicity two with plus and cross modes. The freely falling point-like
particles follow timelike geodesic as in General Relativity, and the evolution of their separation
vector is governed by the geodesic deviation equation of General Relativity.

From gravitational waves, f(Q) and f(T) gravity are indistinguishable from General Relativity.

Equivalence Principle can be recovered by coincident gauge. In general STGs, this is matter of
debate.

The introduction of boundary terms allow to compare teleparallel and symmetric teleparallel
theories with f(R) gravity.

© 6 00

Using general connection I could give further gravitational wave modes.
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